\(\int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx\) [2834]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 129 \[ \int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx=-\frac {62}{27} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {1}{3} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}-\frac {4141}{270} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {62}{135} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

[Out]

-4141/810*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-62/405*EllipticF(1/7*21^(1/2)*(1-2*x)
^(1/2),1/33*1155^(1/2))*33^(1/2)-1/3*(3+5*x)^(3/2)*(1-2*x)^(1/2)*(2+3*x)^(1/2)-62/27*(1-2*x)^(1/2)*(2+3*x)^(1/
2)*(3+5*x)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {104, 159, 164, 114, 120} \[ \int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx=-\frac {62}{135} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {4141}{270} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {1}{3} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {62}{27} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3} \]

[In]

Int[(3 + 5*x)^(5/2)/(Sqrt[1 - 2*x]*Sqrt[2 + 3*x]),x]

[Out]

(-62*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/27 - (Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/3 - (4141*S
qrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/270 - (62*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*S
qrt[1 - 2*x]], 35/33])/135

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2/b)*Rt[-(b
*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /;
 FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-(b*c - a*d)/d, 0] &&
  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])

Rule 120

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(Rt[-b/d,
 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)
/(d*(b*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && Po
sQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a
+ b*x] && GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f,
0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 164

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{3} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}-\frac {1}{15} \int \frac {\left (-\frac {405}{2}-310 x\right ) \sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx \\ & = -\frac {62}{27} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {1}{3} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}+\frac {1}{135} \int \frac {\frac {13105}{2}+\frac {20705 x}{2}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx \\ & = -\frac {62}{27} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {1}{3} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}+\frac {341}{135} \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx+\frac {4141}{270} \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx \\ & = -\frac {62}{27} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {1}{3} \sqrt {1-2 x} \sqrt {2+3 x} (3+5 x)^{3/2}-\frac {4141}{270} \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {62}{135} \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right ) \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.29 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.74 \[ \int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx=\frac {1}{810} \left (4141 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-5 \left (6 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x} (89+45 x)+853 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right )\right ) \]

[In]

Integrate[(3 + 5*x)^(5/2)/(Sqrt[1 - 2*x]*Sqrt[2 + 3*x]),x]

[Out]

((4141*I)*Sqrt[33]*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - 5*(6*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x
]*(89 + 45*x) + (853*I)*Sqrt[33]*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33]))/810

Maple [A] (verified)

Time = 1.35 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.12

method result size
default \(-\frac {\sqrt {3+5 x}\, \sqrt {1-2 x}\, \sqrt {2+3 x}\, \left (28149 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-28987 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )+283500 x^{4}+778050 x^{3}+363720 x^{2}-187530 x -112140\right )}{5670 \left (30 x^{3}+23 x^{2}-7 x -6\right )}\) \(145\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {5 x \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{3}-\frac {89 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{27}+\frac {2621 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2835 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {4141 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{2835 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(206\)
risch \(\frac {\left (89+45 x \right ) \left (-1+2 x \right ) \sqrt {3+5 x}\, \sqrt {2+3 x}\, \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{27 \sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \sqrt {1-2 x}}+\frac {\left (\frac {2621 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, F\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{2970 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {4141 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, \left (\frac {E\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{15}-\frac {2 F\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{3}\right )}{2970 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right ) \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(246\)

[In]

int((3+5*x)^(5/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/5670*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(28149*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^
(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/2))-28987*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2
)*EllipticE((10+15*x)^(1/2),1/35*70^(1/2))+283500*x^4+778050*x^3+363720*x^2-187530*x-112140)/(30*x^3+23*x^2-7*
x-6)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.42 \[ \int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx=-\frac {1}{27} \, {\left (45 \, x + 89\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - \frac {140647}{72900} \, \sqrt {-30} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + \frac {4141}{810} \, \sqrt {-30} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right ) \]

[In]

integrate((3+5*x)^(5/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="fricas")

[Out]

-1/27*(45*x + 89)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) - 140647/72900*sqrt(-30)*weierstrassPInverse(1159
/675, 38998/91125, x + 23/90) + 4141/810*sqrt(-30)*weierstrassZeta(1159/675, 38998/91125, weierstrassPInverse(
1159/675, 38998/91125, x + 23/90))

Sympy [F]

\[ \int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx=\int \frac {\left (5 x + 3\right )^{\frac {5}{2}}}{\sqrt {1 - 2 x} \sqrt {3 x + 2}}\, dx \]

[In]

integrate((3+5*x)**(5/2)/(1-2*x)**(1/2)/(2+3*x)**(1/2),x)

[Out]

Integral((5*x + 3)**(5/2)/(sqrt(1 - 2*x)*sqrt(3*x + 2)), x)

Maxima [F]

\[ \int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {5}{2}}}{\sqrt {3 \, x + 2} \sqrt {-2 \, x + 1}} \,d x } \]

[In]

integrate((3+5*x)^(5/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((5*x + 3)^(5/2)/(sqrt(3*x + 2)*sqrt(-2*x + 1)), x)

Giac [F]

\[ \int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {5}{2}}}{\sqrt {3 \, x + 2} \sqrt {-2 \, x + 1}} \,d x } \]

[In]

integrate((3+5*x)^(5/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="giac")

[Out]

integrate((5*x + 3)^(5/2)/(sqrt(3*x + 2)*sqrt(-2*x + 1)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(3+5 x)^{5/2}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx=\int \frac {{\left (5\,x+3\right )}^{5/2}}{\sqrt {1-2\,x}\,\sqrt {3\,x+2}} \,d x \]

[In]

int((5*x + 3)^(5/2)/((1 - 2*x)^(1/2)*(3*x + 2)^(1/2)),x)

[Out]

int((5*x + 3)^(5/2)/((1 - 2*x)^(1/2)*(3*x + 2)^(1/2)), x)